Properties/Sub-systems

Properties: Evaluation of genes in context.

- comF is found in species that are and are not competent
- In E.coli, it has been shown to be involved in gluconate metabolism
- comF is possibly as a transport permease
- Without knowing the phenotype of the organism homology alone does not tell you everything

H. flu	E. coli	Similarity		
comA	yrfD	33.2		
comB	yrfC	59.2		
comC	yrfB	49.7		
comD	yrfA	44.2		
comE	hofQ	68.9		
comF	yhgH	69.5		
comG	yhgI	91.9		
comI	yhiR	85.1		

What is a property/sub-system?

- An attribute of an organism that will go by many names among biologists and computational geeks, but hopefully they are...rigorously defined
- so that the assertion of its absence, presence is meaningful
- can be made either automatically or manually
- can be quantitative
- probably maps to a CV term, but doesn't yet.

Examples

Biological niche:

 animal pathogen, human pathogen, optimum salinity, optimal growth temperature, ptimal pH, oxygen requirement, plant pathogen, temperature environment

Cell surface component:

• capsule, flagella, outer membrane, peptidoglycan(murein) biosynthesis, S-layer, type IV pilus

Cellular growth, organization and division, cell shape, small molecule transport

 count of TRAP transporter clusters, K+-transporting ATPase KdpFABC, Na+-translocating NADH-quinone reductase, NADH dehydrogenase I, phosphate ABC transporter (pstSCAB-phoU), PTS transport system, sulfate/thiosulfate ABC transporter, TRAP-T (tripartite ATP-indep. periplasmic) transporters

Protein transport

Sec-system protein translocase, Tat (Sec-independent) protein export, type I-IV secretion

Quantitative content

 amino acid abundance, count of DNA molecules, count of predicted proteins, count of tRNAs, DNA dinucleotide thermophily metric RR+YY-RY-YR, DNA GC content, DNA size (megabases), functional gene clustering - property level, protein average length

Selfish genetic elements

CRISPR region, group I intron, group II intron, inteins

Metabolism

 biosynthesis, catabolism, central intermediary metabolism, energy metabolism, nucleic acid metabolism, protein modification and cofactors, storage polymer systems

Defining Properties

- E.g., com locus
 - Gluconate metabolism v. competency
- Requires evaluation of a group of genes
- Do not necessarily map to single genes
- Pathway definitions
 - Typically include yes, no, ORs, maybe, and subsets of gene collections
 - e.g., TCA cycle

GO ←→Sub-systems

- Part of the reason GO assignments are hard
- Note above datatypes (GC content, phylogeny) outside of GO
- No current implentation for making GO assignments

TIGR Model

- "Genome Properties"
- Rules:
 - Subsets w/ encoding of yes, no, or, maybe
- Curatorial and automated components
- Comparison versus other gold standards
- Capability to link to GO, not a lot of data
- Displayed on CMR

Comparative Species Analysis

	Species	Species and Taxa showing indicated pattern of property states						
Properties	most γ- prote o- bacte ria	Bacilli, Actino- bacteria, Bacteroide s, Chlorobiu m, Haemophil us	α-, β- proteobacte ria, Pseudomon as	Bifido- bacterium, Clostridium , Streptococ cus	Archaea, α-, ε- proteobacteria, Deinococcus, B. halodurans, Thermo- anaerobacter, Aquifex, Pirellula, Streptomyces, Thermotoga, Xanthomonad ales	Aeropyru m pernix, Pyrococc us abyssi	Chlamy dia	Spirochaetes , , , Mycoplasma, Rickettsia, Wigglesworth ia, Pyrococcus horikoshii
Chorismate biosynthesi s	YES	YES	YES	YES	YES	YES	YES	noª
Tryptophan biosynthesi s	YES	YES	YES	YES	YES	YES	no	no
Phenylalani ne biosynthesi s	YES	YES	YES	YES	YES	no	no	no
Tyrosine biosynthesi s	YES	YES	YES	YES	YES	no	no	no
Menaquino ne biosynthesi s	YES	YES	no	no	no	no	no	no
Ubiquinone biosynthesi s ^b	YES	no	YES	no	some evidence	some evidence	some evidenc e	no

Curation v automated

- Ian Paulsen: transporters
- Berges Manual
- TIGR/Ross: positive examples

Comparative Species Analysis

	Species	Species and Taxa showing indicated pattern of property states							
Properties	most γ- prote o- bacte ria	Bacilli, Actino- bacteria, Bacteroide s, Chlorobiu m, Haemophil us	α-, β- proteobacte ria, Pseudomon as	Bifido- bacterium, Clostridium , Streptococ cus	Archaea, α-, ε- proteobacteria, Deinococcus, B. halodurans, Thermo- anaerobacter, Aquifex, Pirellula, Streptomyces, Thermotoga, Xanthomonad ales	Aeropyru m pernix, Pyrococc us abyssi	Chlamy dia	Spirochaetes , , , , , , , , , , , , , , , , , , ,	
Chorismate biosynthesi s	YES	YES	YES	YES	YES	YES	YES	noª	
Tryptophan biosynthesi s	YES	YES	YES	YES	YES	YES	no	no	
Phenylalani ne biosynthesi s	YES	YES	YES	YES	YES	no	no	no	
Tyrosine biosynthesi s	YES	YES	YES	YES	YES	no	no	no	
Menaquino ne biosynthesi s	YES	YES	no	no	no	no	no	no	
Ubiquinone biosynthesi s ^b	YES	no	YES	no	some evidence	some evidence	some evidenc e	no	